4 Lagrangian Duality
Consider the following nonlinear optimization problem:
¢ Primal Problem (P)
minimize  f(x)

subject to g(x) < 0,h(z) =0
variables x € X

e Lagrangian Dual Problem (D)

L(z,u,v)

maximize 60(u,v) = infyex (f(z) +u’g(z) + v 'h(z)) 2)
subject to u>0
variables u € R™, v € R

where L is referred as the Lagranian function.

4.1 Duality Theorem

Theorem 4.1 (Weak Duality Theorem). Let x be a feasible solution to Problem
P, and let (u,v) be a feasible solution to Problem D. Then

fu.v) = inf L(E.uv) < Lzw.v) = £(z) + u'g(x) + v7h(z) < f(2)
Corollary 4.2.
sup{f(u,v) :u > 0,v € R} <inf{f(z):z € X,g(x) < 0,h(z) = 0}.

Lemma 4.3 (Supporting Hyperplane Theorem). Let S be a convex set in R™
and xg ¢ S°. Then there exists nonzero vector w € R" such that wl(x—x0) <0
forallx € S.

Proof. See Functional Analysis Exercise 3.1. O

Lemma 4.4. Let X be a convex set in R™. Let a : R™ - R and g : R® — R™
be (componentwise) convex, and h : R™ — RY be affine (that is, h is of the form
h(x) = Ax —b). Also, let ug be a scalar, u € R™ and v € R*. Consider the
following two systems:

System 1: a(z) <0, g(x) <0, h(x) =0 for some x € X.

System 2: upa(z)+ulg(x)+vIh(x) > 0 for some (ug,u,v) # (0,0,0),
(ug,u) > (0,0) and for all x € X.

If System 1 has no solution x, then System 2 has a solution (ug,u,v). Con-
versely, if System 2 has a solution (ug,u,v) with ug > 0, then System 1 has no
solution.
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Proof. e Assume that System 1 has no solution. Define convex set
S={(p,q,r) :p>a(x),q>g(x),r =h(x) for some x € X'}

q
Then (0,0,0) ¢ S, and by supporting hyperplane theorem there exists
(ug,u,v) # (0,0,0) such that

wp+u’q+vir >0, Y(p,q,r) €S

Since (p,q,r) € S implies (p,q,r) € S for all p > p, @ > q, one must have
up > 0 and u > 0. For arbitrary x € X, note that (a(x), g(x),h(x)) € S,
therefore

upa(x) +ul'g(x) + v 'h(x) > 0.

One concludes that System 2 has a solution.

e Assume that System 2 has a solution (ug,u,v) with ug > 0. For any
x € X such that g(x) < 0, h(x) = 0, one must have a(x) > 0. Hence
System 1 has no solution.

O

Theorem 4.5 (Strong Duality Theorem). Let X' be a nonempty convex set in
R". Let f:R™ — R and g : R” — R™ be convex, and h : R — R’ be affine. If
there exists X € X such that g(x) < 0 and h(x) =0 and 0 € h(X)°, then
inf{f(x):x € X,g(x) <0,h(x) =0} =sup{f(u,v) :u>0,veR} (3)
defined as ~ defined as ¢

where O(u,v) is defined in (2). Furthermore, if v is finite, then (1) there exists
optimal dual feasible solution (Q,¥V) such that 8(@,v) = (; (2) If there exists
optimal primal feasible solution X such that f(X) =+, then ulg(x) = 0.

Proof. Note that v < co since X is a primal feasible solution. If v = —oo, then
Corollary.4.2 implies { = —oo and hence (3) is satisified.
Thus, suppose that 7 is finite. Since the following system

f(x) —v <0, g(x) <0, h(x) =0, for some x € X

has no solution, the previous lemma implies there exists (ug,u,v) # (0,0,0),
(up,u) > (0,0) such that

uo[f(x) — 7] +ulg(x) + vI'h(x) > 0,vx € X (4)

o Claim: ug >0
Suppose up = 0, then (4) becomes

u’g(x) + v'h(x) > 0,vx € X

Take x = % implies u = 0. Since 0 € h(X)°, there exists X € X such
that h(x) = —Av for some A\ > 0. Take x = X implies v = 0. Therefore
(up,u,v) = (0,0,0), which is a contradiction.
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Take u = - and v = -, then by (4) one obtains
F(x) +07g(x) + vTh(x) > 7, Vx € X (5)

Therefore 6(u,v) > v. Since §(u,v) < ¢ < v by Corollary.4.2, one concludes
that v = ¢ and that (@, v) solves the dual problem.

Finally, assume X is primal feasible such that f(X) = =, then substitute
x = X into (5) gives u’'g(x) = 0. O
4.2 KKT Conditions

Theorem 4.6. Let z and (u,v) be primal and dual feasible solutions respec-
tively. Then f(x) = 6(u,v) iff the KKT conditions hold:

o Stationary Condition: x € argming  L(Z,u, V).

o Complementary Slackness: u;g;(x) =0 for alli=1,...,n.
o Primal Feasibility: g(x) < 0,h(x) =0

o Dual Feasibility: u > 0.

Proof. e Necessity: Suppose T and 1, v are primal and dual feasible solutions
respectively for which f(z) = 6(q,v). The feasibility conditions follow by
definition. Recall Theorem.4.1, one has
f(@) =6(0,%) = inf L(z,u,%) < L(z,,7) = [(z) + 0"g(@) + " h(z) < f(2)

faS
Hence we can replace the inequalities with equalities. Note that inf,cx L(z,0,Vv) =
L(z,u, V), so the stationary condition holds. Note that h(zZ) = 0, so
ul'g(z) = 0, which implies ;g;(X) = 0 for all i = 1,...,n, so the comple-
mentary slackness holds.

o Sufficiency: Suppose Z, u, v satisify KKT conditions, then
f(a,v) = f(z) +ug(z) + v'h(z) = f(7)

where the first equality comes from stationary condition, and the second
equality comes from complementary slackness and primal feasibility.
O
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5 Support Vector Machines

5.1 Support Vector Classification (SVC)
The SVC optimization problem:

minimize  f(w,b, &) = 2HW|\2—|—ZZ 1051
yi(wl Xl+b)>1—fl _

€ >0 =1,..,N
variables w e R™,beR, £ c RV

subject to

Rewrite it in the form of primal problem:

minimize  f(w,b,€) = 3[w|* + 375, Cié;
subject to (W b €) = —& <0 ,i=1,..,N (6)
variables weR™ beR, & ecRY

as well its Lagrangian dual problem:

L(w,b&,a,5)

N N
maximize 9(a7 ﬁ) = ianERm,b€R7£ERN {f(W, b7 £) + Z aigl,i(wa ba é) + Z ﬁig2,i (Wa b7 E)}
i=1 i=1
subject to «; > 0,8, >0,i=1,.... N
variables «; € R, 3, € Ri=1,.... N

(7)

where the Lagranian function can be explicitly written as

L<waba£a «, ) 7||W|| +Zcfz+zaz 1—-¢& — yz(w Xz+b +Zﬁz z .

i=1 i=1

5.1.1 SVM Dual Problem in Explicit Form

Lemma 5.1. Let (o, 8) be a feasible solution to (7). If the following conditions
hold:

N
ZaiinO, o+ 6;i=C;Vi=1,..,.N (8)

then

Zaz -z Z Zazajyzij Xj- (9)

11]1

Otherwise, if (8) is not satisfied, then 0(«, ) = —

Proof. Take partial deriviates of the Lagranian function L over w,b, £, one has

a 0 al )
VWL = W — oziy,;x,;, fL = — O‘iyh 7L = O, — O — Bi
> ob Zi:l O,

i=1
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If () is satisfied, then 6(«, ) L(W7 b€ a,f) iff w= va 1 YiX;, at which
(9) holds; Otherwise, as 2 L L, ..., ¢ L are constants not identically zero,
one has 0(a, 8) = —oc. O

Remark 5.2. The stationary condition 6(«, ) = L(w,b, &, a, B) holds iff (8)
is satisfied and w = Zfil QGYiX; -

By Lemma.5.1, one may rewrite (7) as

. N

maximize ) ;"0 — 5 ZZ 12; lozloz]yzij X;

subject to ZO,Bz 20,041—#,31 CZ,Z oy =0, i=1,..,N
variables «; € R, 8, €eRji=1,...,. N

which can be further simplified as

. N 1 N N
maximize ) ;"0 — 52 iy ijl QoY YXT X
subject to Zivzl a;y; =0
variables 0<qo; <C;, 1=1,...N

Claim 5.3. There exists primal optimal solution (W,b,€) to problem (6).

Proof. (Warning: This proof requires basic understanding of mathematical anal-
ysis, which is beyond the scope of this course. It will not appear in course exams,
and is merely a reference for those who are interested.)

WLOG one may assume the training data contains both positive and negative
instances. 3 The set of all primal feasible solutions is (cf.(6))

0= ﬂ g7 H(—00,01)Ng5 L ((—00.0])),

which is an intersection of closed sets, so ) is closed. Take some (wyg,bo,&0)€ES2,
note that there exists compact set K where all primal feasible solutions (w,b,€)€
Q with f(w,b,&)<f(wo,bo,&0) must satisfy (w,b,€)eK.

e To see this, if (w,b,£)€Q and f(w,b,&)<f(wo,bo,€0)=kKo, then |w]||<+v/2k0,
and that |&|<ko/Ci, 1—&—vyi(wl'x;+b)<0 for all i=1,...,N. Note that
for arbitrary positive instance (with index ¢) and negative instance (with
index j), that is y;=—y;=1, one has

K K
1—50_—\/ 2k |x; Hgl_gi_WTXiSbggj_l_WijS?O__l"'\/ 2k |||
7 J

which implies
l—_max{l——\/Z% ||XZ||}<b< min {g?—l—i-\/?noﬂxj”}:u
By;=1 Y= i

Hence (w,b,€)€K, for which K={(w,b,£):||w||<v/2k0,|&|<ro/Ci,1<b<u}
is a compact set.

30therwise, say y1=--=yn=C for some (€{%1}, then (w,b,£)=(0,¢,0) is a trivial primal
optimal solution.

19



Since f is continuous and QNK is compact, so f(2NK) is compact. Hence there
exists (w,b,£)€QNK for which

f(W,E,E_): inf f(W,b,£)= inf f(wvbvg)

(w,b,8)EQNK (w,b,6)eQ
In other words, (W,b,€) is a primal optimal solution. O

As we have shown the existence of primal optimal solution (W, b, £), Theorem.4.5

implies there also exists dual optimal solution (@, ﬂ)_. In the following claims we
further link the relations between (w,b, &) and (&, §).

5.1.2 KKT Condition for SVM
Recall Remark.5.2, the stationary condition holds iff
(S].) a;+B;=C;Vi=1,...N

(S2) YL ey =0
(83) w= Zil QYiX;

The primal and dual feasibility conditions are

(P1) g1i(w,0,6) =1—& —yi(wx; +b) <0
(PQ) gQ,i(Wa b7 é) = 75@ S O
(D2) B; =0

Vi=1,..,N

The complementary slackness condition is

(C1) igri(w,b,€) =i (1—& —yi(wix; +b)) =0

(02) Biggﬂ-(w, b,&) = ﬂz (751) — 0 \V/'L = 1, ,N

Claim 5.4. Suppose (W,b,€&) and (&, ) are the optimal solutions to problems
(6) and (7) respectively, then

N N
W = Z a;yiX;, b= argmin Z C; max (1 — 1y (Wh'x; +b), O) .
i=1 bER =y
a; = C; f:i:1—yi(V_VTXi+?)), ifyi(WTXi—‘y-é) <1
a; =0, & =0, if ys(W'x; +0) > 1
0<a; <C;, &=0, if yi(Wwhx; +b) =1

In particular, & = max (1 —yi(WTx; +b), O) foralli=1,...,N.

Proof. Observe that (6) can be rewritten as the following optimization problem

minimize 1||wl* + Zil C;max (1 — y;(wh'x; +b),0)
variables w e R™ beR
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Given the optimal weighting vector w, the optimal bias is given by

N
b= i C; 1—y vl i +0),0).
ar%er]rk}m; max (1 —y;(w'x ),0)

By Theorem.4.6, (w,b,&, &, 3) satisfies KKT conditions, so w = Zfil QX
and that the following satisfies for all i =1,..., N:

(P1) y(Wwixi+b)>1-¢&
(P2) & >0

(D1) a@; >0

(D2) B; >0

(C2) Bi&=0

(S1) a+p=0C

o If yi(Ww"x;+b) < 1, then & > 0 by (P1), 3; = 0 by (C2), a; = C; by (S1),

o If y;(Wwl'x; +0b) > 1, then @; = 0 by (P2,C1), so 8; = C; by (S1),s0& =0
by (C2).

o If y;(WI'x; +b) = 1, then & = 0 by (S1,C1,C2), and 0 < &; < C; by
(D1,D2,S1).

O
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