4 Lagrangian Duality

Consider the following nonlinear optimization problem:

• Primal Problem (P)

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & \mathbf{g}(x) \leq \mathbf{0}, \mathbf{h}(x) = \mathbf{0} \\ \text{variables} & x \in \mathcal{X} \end{array}$

• Lagrangian Dual Problem (D)

maximize
$$\theta(\mathbf{u}, \mathbf{v}) = \inf_{x \in \mathcal{X}} \underbrace{f(x) + \mathbf{u}^T \mathbf{g}(x) + \mathbf{v}^T \mathbf{h}(x)}_{L(x, \mathbf{u}, \mathbf{v})}$$
subject to $\mathbf{u} \ge \mathbf{0}$
variables $\mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^\ell$
(2)

where L is referred as the Lagranian function.

4.1 Duality Theorem

Theorem 4.1 (Weak Duality Theorem). Let x be a feasible solution to Problem P, and let (\mathbf{u}, \mathbf{v}) be a feasible solution to Problem D. Then

$$\theta(\mathbf{u}, \mathbf{v}) = \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \mathbf{u}, \mathbf{v}) \le L(x, \mathbf{u}, \mathbf{v}) = f(x) + \mathbf{u}^T \mathbf{g}(x) + \mathbf{v}^T \mathbf{h}(x) \le f(x)$$

Corollary 4.2.

$$\sup\{\theta(\mathbf{u},\mathbf{v}):\mathbf{u}\geq\mathbf{0},\mathbf{v}\in\mathbb{R}^{\ell}\}\leq\inf\{f(x):x\in\mathcal{X},\mathbf{g}(x)\leq\mathbf{0},\mathbf{h}(x)=\mathbf{0}\}.$$

Lemma 4.3 (Supporting Hyperplane Theorem). Let S be a convex set in \mathbb{R}^n and $\mathbf{x}_0 \notin S^\circ$. Then there exists nonzero vector $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{w}^T(\mathbf{x}-\mathbf{x}_0) \leq 0$ for all $\mathbf{x} \in \overline{S}$.

Proof. See Functional Analysis Exercise 3.1.

Lemma 4.4. Let \mathcal{X} be a convex set in \mathbb{R}^n . Let $\alpha : \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^m$ be (componentwise) convex, and $\mathbf{h} : \mathbb{R}^n \to \mathbb{R}^\ell$ be affine (that is, \mathbf{h} is of the form $\mathbf{h}(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$). Also, let u_0 be a scalar, $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^\ell$. Consider the following two systems:

System 1: $\alpha(x) < 0$, $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$, $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \in \mathcal{X}$.

System 2: $u_0 \alpha(x) + \mathbf{u}^T \mathbf{g}(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x}) \ge 0$ for some $(u_0, \mathbf{u}, \mathbf{v}) \neq (0, \mathbf{0}, \mathbf{0})$, $(u_0, \mathbf{u}) \ge (0, \mathbf{0})$ and for all $\mathbf{x} \in \mathcal{X}$.

If System 1 has no solution \mathbf{x} , then System 2 has a solution $(u_0, \mathbf{u}, \mathbf{v})$. Conversely, if System 2 has a solution $(u_0, \mathbf{u}, \mathbf{v})$ with $u_0 > 0$, then System 1 has no solution.

Proof. • Assume that System 1 has no solution. Define convex set

$$S = \{(p, \mathbf{q}, \mathbf{r}) : p > \alpha(\mathbf{x}), \mathbf{q} \ge \mathbf{g}(\mathbf{x}), \mathbf{r} = \mathbf{h}(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$$

Then $(0, 0, 0) \notin S$, and by supporting hyperplane theorem there exists $(u_0, \mathbf{u}, \mathbf{v}) \neq (0, 0, 0)$ such that

$$u_0 p + \mathbf{u}^T \mathbf{q} + \mathbf{v}^T \mathbf{r} \ge 0, \quad \forall (p, \mathbf{q}, \mathbf{r}) \in \bar{S}$$

Since $(p, \mathbf{q}, \mathbf{r}) \in S$ implies $(\tilde{p}, \tilde{\mathbf{q}}, \mathbf{r}) \in S$ for all $\tilde{p} \geq p$, $\tilde{\mathbf{q}} \geq \mathbf{q}$, one must have $u_0 \geq 0$ and $\mathbf{u} \geq \mathbf{0}$. For arbitrary $\mathbf{x} \in \mathcal{X}$, note that $(\alpha(\mathbf{x}), \mathbf{g}(\mathbf{x}), \mathbf{h}(\mathbf{x})) \in \bar{S}$, therefore

$$u_0 \alpha(\mathbf{x}) + \mathbf{u}^T \mathbf{g}(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x}) \ge 0$$

One concludes that System 2 has a solution.

• Assume that System 2 has a solution $(u_0, \mathbf{u}, \mathbf{v})$ with $u_0 > 0$. For any $\mathbf{x} \in \mathcal{X}$ such that $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$, $\mathbf{h}(\mathbf{x}) = \mathbf{0}$, one must have $\alpha(\mathbf{x}) \geq 0$. Hence System 1 has no solution.

Theorem 4.5 (Strong Duality Theorem). Let \mathcal{X} be a nonempty convex set in \mathbb{R}^n . Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be convex, and $h : \mathbb{R}^n \to \mathbb{R}^\ell$ be affine. If there exists $\hat{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{g}(\hat{\mathbf{x}}) < \mathbf{0}$ and $\mathbf{h}(\hat{\mathbf{x}}) = \mathbf{0}$ and $\mathbf{0} \in \mathbf{h}(\mathcal{X})^\circ$, then

$$\underbrace{\inf\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}, \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}\}}_{defined \ as \ \gamma} = \underbrace{\sup\{\theta(\mathbf{u}, \mathbf{v}): \mathbf{u} \ge \mathbf{0}, \mathbf{v} \in \mathbb{R}^{\ell}\}}_{defined \ as \ \zeta} \quad (3)$$

where $\theta(\mathbf{u}, \mathbf{v})$ is defined in (2). Furthermore, if γ is finite, then (1) there exists optimal dual feasible solution $(\bar{\mathbf{u}}, \bar{\mathbf{v}})$ such that $\theta(\bar{\mathbf{u}}, \bar{\mathbf{v}}) = \zeta$; (2) If there exists optimal primal feasible solution $\bar{\mathbf{x}}$ such that $f(\bar{\mathbf{x}}) = \gamma$, then $\bar{\mathbf{u}}^T \mathbf{g}(\bar{\mathbf{x}}) = 0$.

Proof. Note that $\gamma < \infty$ since $\hat{\mathbf{x}}$ is a primal feasible solution. If $\gamma = -\infty$, then Corollary.4.2 implies $\zeta = -\infty$ and hence (3) is satisified.

Thus, suppose that γ is finite. Since the following system

$$f(\mathbf{x}) - \gamma < 0, \ \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \text{for some } \mathbf{x} \in \mathcal{X}$$

has no solution, the previous lemma implies there exists $(u_0, \mathbf{u}, \mathbf{v}) \neq (0, \mathbf{0}, \mathbf{0}),$ $(u_0, \mathbf{u}) \geq (0, \mathbf{0})$ such that

$$u_0[f(\mathbf{x}) - \gamma] + \mathbf{u}^T \mathbf{g}(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x}) \ge 0, \forall \mathbf{x} \in \mathcal{X}$$
(4)

• Claim: $u_0 > 0$

Suppose $u_0 = 0$, then (4) becomes

$$\mathbf{u}^T \mathbf{g}(\mathbf{x}) + \mathbf{v}^T \mathbf{h}(\mathbf{x}) \ge 0, \forall \mathbf{x} \in \mathcal{X}$$

Take $\mathbf{x} = \hat{\mathbf{x}}$ implies $\mathbf{u} = \mathbf{0}$. Since $\mathbf{0} \in \mathbf{h}(\mathcal{X})^{\circ}$, there exists $\tilde{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{h}(\tilde{\mathbf{x}}) = -\lambda \mathbf{v}$ for some $\lambda > 0$. Take $\mathbf{x} = \tilde{\mathbf{x}}$ implies $\mathbf{v} = \mathbf{0}$. Therefore $(u_0, \mathbf{u}, \mathbf{v}) = (0, \mathbf{0}, \mathbf{0})$, which is a contradiction.

Take $\bar{\mathbf{u}} = \frac{\mathbf{u}}{u_0}$ and $\bar{\mathbf{v}} = \frac{\mathbf{v}}{u_0}$, then by (4) one obtains

$$f(\mathbf{x}) + \bar{\mathbf{u}}^T \mathbf{g}(\mathbf{x}) + \bar{\mathbf{v}}^T \mathbf{h}(\mathbf{x}) \ge \gamma, \ \forall \mathbf{x} \in \mathcal{X}$$
(5)

Therefore $\theta(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \geq \gamma$. Since $\theta(\bar{\mathbf{u}}, \bar{\mathbf{v}}) \leq \zeta \leq \gamma$ by Corollary.4.2, one concludes that $\gamma = \zeta$ and that $(\bar{\mathbf{u}}, \bar{\mathbf{v}})$ solves the dual problem.

Finally, assume $\bar{\mathbf{x}}$ is primal feasible such that $f(\bar{\mathbf{x}}) = \gamma$, then substitute $\mathbf{x} = \bar{\mathbf{x}}$ into (5) gives $\bar{\mathbf{u}}^T \mathbf{g}(\bar{\mathbf{x}}) = 0$.

4.2 KKT Conditions

Theorem 4.6. Let x and (\mathbf{u}, \mathbf{v}) be primal and dual feasible solutions respectively. Then $f(x) = \theta(\mathbf{u}, \mathbf{v})$ iff the **KKT conditions** hold:

- Stationary Condition: $x \in \arg\min_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \mathbf{u}, \mathbf{v})$.
- Complementary Slackness: $u_i g_i(x) = 0$ for all i = 1, ..., n.
- Primal Feasibility: $\mathbf{g}(x) \leq \mathbf{0}, \mathbf{h}(x) = \mathbf{0}$
- Dual Feasibility: $\mathbf{u} \geq \mathbf{0}$.
- **Proof.** Necessity: Suppose \bar{x} and $\bar{\mathbf{u}}$, $\bar{\mathbf{v}}$ are primal and dual feasible solutions respectively for which $f(\bar{x}) = \theta(\bar{\mathbf{u}}, \bar{\mathbf{v}})$. The feasibility conditions follow by definition. Recall Theorem.4.1, one has

$$f(\bar{x}) = \theta(\bar{\mathbf{u}}, \bar{\mathbf{v}}) = \inf_{x \in \mathcal{X}} L(x, \bar{\mathbf{u}}, \bar{\mathbf{v}}) \le L(\bar{x}, \bar{\mathbf{u}}, \bar{\mathbf{v}}) = f(\bar{x}) + \bar{\mathbf{u}}^T \mathbf{g}(\bar{x}) + \bar{\mathbf{v}}^T \mathbf{h}(\bar{x}) \le f(\bar{x})$$

Hence we can replace the inequalities with equalities. Note that $\inf_{x \in \mathcal{X}} L(x, \bar{\mathbf{u}}, \bar{\mathbf{v}}) = L(\bar{x}, \bar{\mathbf{u}}, \bar{\mathbf{v}})$, so the stationary condition holds. Note that $\mathbf{h}(\bar{x}) = \mathbf{0}$, so $\bar{\mathbf{u}}^T \mathbf{g}(\bar{x}) = 0$, which implies $\bar{u}_i g_i(\bar{\mathbf{x}}) = 0$ for all i = 1, ..., n, so the complementary slackness holds.

• Sufficiency: Suppose $\bar{x}, \bar{\mathbf{u}}, \bar{\mathbf{v}}$ satisify KKT conditions, then

$$\theta(\bar{\mathbf{u}}, \bar{\mathbf{v}}) = f(\bar{x}) + \bar{\mathbf{u}}^T \mathbf{g}(\bar{x}) + \bar{\mathbf{v}}^T \mathbf{h}(\bar{x}) = f(\bar{x})$$

where the first equality comes from stationary condition, and the second equality comes from complementary slackness and primal feasibility.

5 Support Vector Machines

5.1 Support Vector Classification (SVC)

The SVC optimization problem:

minimize
$$f(\mathbf{w}, b, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N C_i \xi_i$$

subject to
$$\begin{array}{l} y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{array}, \quad i = 1, ..., N$$

variables
$$\mathbf{w} \in \mathbb{R}^m, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N$$

Rewrite it in the form of **primal problem**:

minimize
$$f(\mathbf{w}, b, \boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N C_i \xi_i$$

subject to
$$g_{1,i}(\mathbf{w}, b, \boldsymbol{\xi}) = 1 - \xi_i - y_i(\mathbf{w}^T \mathbf{x}_i + b) \le 0$$

$$g_{2,i}(\mathbf{w}, b, \boldsymbol{\xi}) = -\xi_i \le 0$$

variables
$$\mathbf{w} \in \mathbb{R}^m, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N$$
 (6)

as well its Lagrangian dual problem:

maximize
$$\theta(\alpha, \beta) = \inf_{\mathbf{w} \in \mathbb{R}^{m}, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^{N}} \{ f(\mathbf{w}, b, \boldsymbol{\xi}) + \sum_{i=1}^{N} \alpha_{i} g_{1,i}(\mathbf{w}, b, \boldsymbol{\xi}) + \sum_{i=1}^{N} \beta_{i} g_{2,i}(\mathbf{w}, b, \boldsymbol{\xi}) \}$$

subject to $\alpha_{i} \geq 0, \beta_{i} \geq 0, i = 1, ..., N$
variables $\alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, i = 1, ..., N$ (7)

where the Lagranian function can be explicitly written as

$$L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} C_i \xi_i + \sum_{i=1}^{N} \alpha_i \left(1 - \xi_i - y_i (\mathbf{w}^T \mathbf{x}_i + b)\right) + \sum_{i=1}^{N} \beta_i \left(-\xi_i\right).$$

5.1.1 SVM Dual Problem in Explicit Form

Lemma 5.1. Let (α, β) be a feasible solution to (7). If the following conditions hold:

$$\sum_{i=1}^{N} \alpha_i y_i = 0, \ \alpha_i + \beta_i = C_i \ \forall i = 1, ..., N$$
(8)

then

$$\theta(\alpha,\beta) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j.$$
(9)

Otherwise, if (8) is not satisfied, then $\theta(\alpha, \beta) = -\infty$.

Proof. Take partial deriviates of the Lagranian function L over $\mathbf{w}, b, \boldsymbol{\xi}$, one has

$$\nabla_{\mathbf{w}}L = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i, \quad \frac{\partial}{\partial b}L = -\sum_{i=1}^{N} \alpha_i y_i, \quad \frac{\partial}{\partial \xi_i}L = C_i - \alpha_i - \beta_i$$

If (8) is satisfied, then $\theta(\alpha, \beta) = L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta)$ iff $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$, at which (9) holds; Otherwise, as $\frac{\partial}{\partial b}L, \frac{\partial}{\partial \xi_1}L, ..., \frac{\partial}{\partial \xi_N}L$ are constants not identically zero, one has $\theta(\alpha, \beta) = -\infty$.

Remark 5.2. The stationary condition $\theta(\alpha, \beta) = L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta)$ holds iff (8) is satisfied and $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$.

By Lemma.5.1, one may rewrite (7) as

 $\begin{array}{ll} \text{maximize} & \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \\ \text{subject to} & \alpha_i \geq 0, \beta_i \geq 0, \alpha_i + \beta_i = C_i, \sum_{i=1}^{N} \alpha_i y_i = 0, \quad i = 1, ..., N \\ \text{variables} & \alpha_i \in \mathbb{R}, \beta_i \in \mathbb{R}, i = 1, ..., N \end{array}$

which can be further simplified as

maximize
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
subject to
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$
variables
$$0 \le \alpha_i \le C_i, \ i = 1, ..., N$$

Claim 5.3. There exists primal optimal solution $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}})$ to problem (6).

Proof. (Warning: This proof requires basic understanding of mathematical analysis, which is beyond the scope of this course. It will not appear in course exams, and is merely a reference for those who are interested.)

WLOG one may assume the training data contains both positive and negative instances. ³ The set of all primal feasible solutions is (cf.(6))

$$\Omega = \bigcap_{i=1}^{N} \left(g_{1,i}^{-1}((-\infty,0]) \cap g_{2,i}^{-1}((-\infty,0]) \right),$$

which is an intersection of closed sets, so Ω is closed. Take some $(\mathbf{w}_0, b_0, \boldsymbol{\xi}_0) \in \Omega$, note that there exists compact set K where all primal feasible solutions $(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega$ with $f(\mathbf{w}, b, \boldsymbol{\xi}) \leq f(\mathbf{w}_0, b_0, \boldsymbol{\xi}_0)$ must satisfy $(\mathbf{w}, b, \boldsymbol{\xi}) \in K$.

• To see this, if $(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega$ and $f(\mathbf{w}, b, \boldsymbol{\xi}) \leq f(\mathbf{w}_0, b_0, \boldsymbol{\xi}_0) = \kappa_0$, then $\|\mathbf{w}\| \leq \sqrt{2\kappa_0}$, and that $|\xi_i| \leq \kappa_0 / C_i$, $1 - \xi_i - y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 0$ for all i = 1, ..., N. Note that for arbitrary positive instance (with index *i*) and negative instance (with index *j*), that is $y_i = -y_j = 1$, one has

$$1 - \frac{\kappa_0}{C_i} - \sqrt{2\kappa_0} \|\mathbf{x}_i\| \le 1 - \xi_i - \mathbf{w}^T \mathbf{x}_i \le b \le \xi_j - 1 - \mathbf{w}^T \mathbf{x}_j \le \frac{\kappa_0}{C_j} - 1 + \sqrt{2\kappa_0} \|\mathbf{x}_j\|$$

which implies

$$l = \max_{i:y_i=1} \left\{ 1 - \frac{\kappa_0}{C_i} - \sqrt{2\kappa_0} \|\mathbf{x}_i\| \right\} \le b \le \min_{j:y_j=-1} \left\{ \frac{\kappa_0}{C_j} - 1 + \sqrt{2\kappa_0} \|\mathbf{x}_j\| \right\} = u.$$

Hence $(\mathbf{w}, b, \boldsymbol{\xi}) \in K$, for which $K = \{(\mathbf{w}, b, \boldsymbol{\xi}) : \|\mathbf{w}\| \leq \sqrt{2\kappa_0}, |\xi_i| \leq \kappa_0 / C_i, l \leq b \leq u\}$ is a compact set.

³Otherwise, say $y_1 = \cdots = y_N = \zeta$ for some $\zeta \in \{\pm 1\}$, then $(\mathbf{w}, b, \boldsymbol{\xi}) = (\mathbf{0}, \zeta, \mathbf{0})$ is a trivial primal optimal solution.

Since f is continuous and $\Omega \cap K$ is compact, so $f(\Omega \cap K)$ is compact. Hence there exists $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}}) \in \Omega \cap K$ for which

$$f(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}}) = \inf_{(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega \cap K} f(\mathbf{w}, b, \boldsymbol{\xi}) = \inf_{(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega} f(\mathbf{w}, b, \boldsymbol{\xi})$$

In other words, $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}})$ is a primal optimal solution.

As we have shown the existence of primal optimal solution $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}})$, Theorem.4.5 implies there also exists dual optimal solution $(\bar{\alpha}, \bar{\beta})$. In the following claims we further link the relations between $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}})$ and $(\bar{\alpha}, \bar{\beta})$.

5.1.2 KKT Condition for SVM

Recall Remark.5.2, the stationary condition holds iff

(S1)
$$\alpha_i + \beta_i = C_i \quad \forall i = 1, ..., N$$

(S2) $\sum_{i=1}^{N} \alpha_i y_i = 0$
(S3) $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$

The primal and dual feasibility conditions are

$$\begin{array}{ll} (\text{P1}) & g_{1,i}(\mathbf{w},b,\boldsymbol{\xi}) = 1 - \xi_i - y_i(\mathbf{w}^T \mathbf{x}_i + b) \leq 0 \\ (\text{P2}) & g_{2,i}(\mathbf{w},b,\boldsymbol{\xi}) = -\xi_i \leq 0 \\ (\text{D1}) & \alpha_i \geq 0 \\ (\text{D2}) & \beta_i \geq 0 \end{array} \qquad \forall i = 1,...,N$$

The complementary slackness condition is

(C1)
$$\alpha_i g_{1,i}(\mathbf{w}, b, \boldsymbol{\xi}) = \alpha_i \left(1 - \xi_i - y_i(\mathbf{w}^T \mathbf{x}_i + b)\right) = 0$$

(C2) $\beta_i g_{2,i}(\mathbf{w}, b, \boldsymbol{\xi}) = \beta_i \left(-\xi_i\right) = 0$ $\forall i = 1, ..., N$

Claim 5.4. Suppose $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}})$ and $(\bar{\alpha}, \bar{\beta})$ are the optimal solutions to problems (6) and (7) respectively, then

$$\begin{split} \bar{\mathbf{w}} &= \sum_{i=1}^{N} \bar{\alpha}_{i} y_{i} \mathbf{x}_{i}, \quad \bar{b} = \operatorname*{arg\,min}_{b \in \mathbb{R}} \sum_{i=1}^{N} C_{i} \max \left(1 - y_{i} (\bar{\mathbf{w}}^{T} \mathbf{x}_{i} + b), 0 \right). \\ \begin{cases} \bar{\alpha}_{i} &= C_{i}, \qquad \bar{\xi}_{i} = 1 - y_{i} (\bar{\mathbf{w}}^{T} \mathbf{x}_{i} + \bar{b}), & \text{if } y_{i} (\bar{\mathbf{w}}^{T} \mathbf{x}_{i} + \bar{b}) < 1 \\ \bar{\alpha}_{i} &= 0, \qquad \bar{\xi}_{i} = 0, \qquad \text{if } y_{i} (\bar{\mathbf{w}}^{T} \mathbf{x}_{i} + \bar{b}) > 1 \\ 0 \leq \bar{\alpha}_{i} \leq C_{i}, \quad \bar{\xi}_{i} = 0, \qquad \text{if } y_{i} (\bar{\mathbf{w}}^{T} \mathbf{x}_{i} + \bar{b}) = 1 \end{split}$$

In particular, $\bar{\xi}_i = \max\left(1 - y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b}), 0\right)$ for all i = 1, ..., N.

Proof. Observe that (6) can be rewritten as the following optimization problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} C_i \max\left(1 - y_i(\mathbf{w}^T \mathbf{x}_i + b), 0\right)$$
variables $\mathbf{w} \in \mathbb{R}^m, b \in \mathbb{R}$

Given the optimal weighting vector $\bar{\mathbf{w}}$, the optimal bias is given by

$$\bar{b} = \operatorname*{arg\,min}_{b \in \mathbb{R}} \sum_{i=1}^{N} C_i \max\left(1 - y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + b), 0\right).$$

By Theorem.4.6, $(\bar{\mathbf{w}}, \bar{b}, \bar{\boldsymbol{\xi}}, \bar{\alpha}, \bar{\beta})$ satisfies KKT conditions, so $\bar{\mathbf{w}} = \sum_{i=1}^{N} \bar{\alpha}_i y_i \mathbf{x}_i$ and that the following satisfies for all i = 1, ..., N:

- $\begin{array}{ll} (\mathrm{P1}) & y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b}) \geq 1 \bar{\xi}_i \\ (\mathrm{P2}) & \bar{\xi}_i \geq 0 \\ (\mathrm{D1}) & \bar{\alpha}_i \geq 0 \\ (\mathrm{D2}) & \bar{\beta}_i \geq 0 \\ (\mathrm{C1}) & \bar{\alpha}_i \left(1 \bar{\xi}_i y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b})\right) = 0 \\ (\mathrm{C2}) & \bar{\beta}_i \bar{\xi}_i = 0 \\ (\mathrm{S1}) & \bar{\alpha}_i + \bar{\beta}_i = C_i \end{array}$
- If $y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b}) < 1$, then $\bar{\xi}_i > 0$ by (P1), $\bar{\beta}_i = 0$ by (C2), $\bar{\alpha}_i = C_i$ by (S1), $\bar{\xi}_i = 1 y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b})$ by (C1).
- If $y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b}) > 1$, then $\bar{\alpha}_i = 0$ by (P2,C1), so $\bar{\beta}_i = C_i$ by (S1), so $\bar{\xi}_i = 0$ by (C2).
- If $y_i(\bar{\mathbf{w}}^T \mathbf{x}_i + \bar{b}) = 1$, then $\bar{\xi}_i = 0$ by (S1,C1,C2), and $0 \leq \bar{\alpha}_i \leq C_i$ by (D1,D2,S1).