4 Lagrangian Duality

Consider the following nonlinear optimization problem:

- Primal Problem (P)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & \mathbf{g}(x) \leq \mathbf{0}, \mathbf{h}(x)=\mathbf{0} \\
\text { variables } & x \in \mathcal{X}
\end{array}
$$

- Lagrangian Dual Problem (D)

$$
\begin{array}{ll}
\text { maximize } & \theta(\mathbf{u}, \mathbf{v})=\inf _{x \in \mathcal{X}} \overbrace{\left(f(x)+\mathbf{u}^{T} \mathbf{g}(x)+\mathbf{v}^{T} \mathbf{h}(x)\right)}^{L(x, \mathbf{u}, \mathbf{v})} \tag{2}\\
\text { subject to } & \mathbf{u} \geq \mathbf{0} \\
\text { variables } & \mathbf{u} \in \mathbb{R}^{m}, \mathbf{v} \in \mathbb{R}^{\ell}
\end{array}
$$

where L is referred as the Lagranian function.

4.1 Duality Theorem

Theorem 4.1 (Weak Duality Theorem). Let x be a feasible solution to Problem P, and let (\mathbf{u}, \mathbf{v}) be a feasible solution to Problem D. Then

$$
\theta(\mathbf{u}, \mathbf{v})=\inf _{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \mathbf{u}, \mathbf{v}) \leq L(x, \mathbf{u}, \mathbf{v})=f(x)+\mathbf{u}^{T} \mathbf{g}(x)+\mathbf{v}^{T} \mathbf{h}(x) \leq f(x)
$$

Corollary 4.2 .

$$
\sup \left\{\theta(\mathbf{u}, \mathbf{v}): \mathbf{u} \geq \mathbf{0}, \mathbf{v} \in \mathbb{R}^{\ell}\right\} \leq \inf \{f(x): x \in \mathcal{X}, \mathbf{g}(x) \leq \mathbf{0}, \mathbf{h}(x)=\mathbf{0}\}
$$

Lemma 4.3 (Supporting Hyperplane Theorem). Let S be a convex set in \mathbb{R}^{n} and $\mathbf{x}_{0} \notin S^{\circ}$. Then there exists nonzero vector $\mathbf{w} \in \mathbb{R}^{n}$ such that $\mathbf{w}^{T}\left(\mathbf{x}-\mathbf{x}_{0}\right) \leq 0$ for all $\mathbf{x} \in \bar{S}$.

Proof. See Functional Analysis Exercise 3.1.
Lemma 4.4. Let \mathcal{X} be a convex set in \mathbb{R}^{n}. Let $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be (componentwise) convex, and $\mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$ be affine (that is, \mathbf{h} is of the form $\mathbf{h}(\mathbf{x})=\mathbf{A x}-\mathbf{b})$. Also, let u_{0} be a scalar, $\mathbf{u} \in \mathbb{R}^{m}$ and $\mathbf{v} \in \mathbb{R}^{\ell}$. Consider the following two systems:

System 1: $\alpha(x)<0, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x})=\mathbf{0}$ for some $\mathbf{x} \in \mathcal{X}$.
System 2: $u_{0} \alpha(x)+\mathbf{u}^{T} \mathbf{g}(\mathbf{x})+\mathbf{v}^{T} \mathbf{h}(\mathbf{x}) \geq 0$ for some $\left(u_{0}, \mathbf{u}, \mathbf{v}\right) \neq(0, \mathbf{0}, \mathbf{0})$, $\left(u_{0}, \mathbf{u}\right) \geq(0, \mathbf{0})$ and for all $\mathbf{x} \in \mathcal{X}$.

If System 1 has no solution \mathbf{x}, then System 2 has a solution ($u_{0}, \mathbf{u}, \mathbf{v}$). Conversely, if System 2 has a solution ($u_{0}, \mathbf{u}, \mathbf{v}$) with $u_{0}>0$, then System 1 has no solution.

Proof. - Assume that System 1 has no solution. Define convex set

$$
S=\{(p, \mathbf{q}, \mathbf{r}): p>\alpha(\mathbf{x}), \mathbf{q} \geq \mathbf{g}(\mathbf{x}), \mathbf{r}=\mathbf{h}(\mathbf{x}) \text { for some } \mathbf{x} \in \mathcal{X}\}
$$

Then $(0, \mathbf{0}, \mathbf{0}) \notin S$, and by supporting hyperplane theorem there exists $\left(u_{0}, \mathbf{u}, \mathbf{v}\right) \neq(0, \mathbf{0}, \mathbf{0})$ such that

$$
u_{0} p+\mathbf{u}^{T} \mathbf{q}+\mathbf{v}^{T} \mathbf{r} \geq 0, \quad \forall(p, \mathbf{q}, \mathbf{r}) \in \bar{S}
$$

Since $(p, \mathbf{q}, \mathbf{r}) \in S$ implies $(\tilde{p}, \tilde{\mathbf{q}}, \mathbf{r}) \in S$ for all $\tilde{p} \geq p, \tilde{\mathbf{q}} \geq \mathbf{q}$, one must have $u_{0} \geq 0$ and $\mathbf{u} \geq \mathbf{0}$. For arbitrary $\mathbf{x} \in \mathcal{X}$, note that $(\alpha(\mathbf{x}), \mathbf{g}(\mathbf{x}), \mathbf{h}(\mathbf{x})) \in \bar{S}$, therefore

$$
u_{0} \alpha(\mathbf{x})+\mathbf{u}^{T} \mathbf{g}(\mathbf{x})+\mathbf{v}^{T} \mathbf{h}(\mathbf{x}) \geq 0
$$

One concludes that System 2 has a solution.

- Assume that System 2 has a solution $\left(u_{0}, \mathbf{u}, \mathbf{v}\right)$ with $u_{0}>0$. For any $\mathbf{x} \in \mathcal{X}$ such that $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x})=\mathbf{0}$, one must have $\alpha(\mathbf{x}) \geq 0$. Hence System 1 has no solution.

Theorem 4.5 (Strong Duality Theorem). Let \mathcal{X} be a nonempty convex set in \mathbb{R}^{n}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be convex, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$ be affine. If there exists $\hat{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{g}(\hat{\mathbf{x}})<\mathbf{0}$ and $\mathbf{h}(\hat{\mathbf{x}})=\mathbf{0}$ and $\mathbf{0} \in \mathbf{h}(\mathcal{X})^{\circ}$, then

$$
\begin{equation*}
\underbrace{\inf \{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x})=\mathbf{0}\}}_{\text {defined as } \gamma}=\underbrace{\sup \left\{\theta(\mathbf{u}, \mathbf{v}): \mathbf{u} \geq \mathbf{0}, \mathbf{v} \in \mathbb{R}^{\ell}\right\}}_{\text {defined as } \zeta} \tag{3}
\end{equation*}
$$

where $\theta(\mathbf{u}, \mathbf{v})$ is defined in (2). Furthermore, if γ is finite, then (1) there exists optimal dual feasible solution $(\overline{\mathbf{u}}, \overline{\mathbf{v}})$ such that $\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}})=\zeta$; (2) If there exists optimal primal feasible solution $\overline{\mathbf{x}}$ such that $f(\overline{\mathbf{x}})=\gamma$, then $\overline{\mathbf{u}}^{T} \mathbf{g}(\overline{\mathbf{x}})=0$.

Proof. Note that $\gamma<\infty$ since $\hat{\mathbf{x}}$ is a primal feasible solution. If $\gamma=-\infty$, then Corollary.4.2 implies $\zeta=-\infty$ and hence (3) is satisified.

Thus, suppose that γ is finite. Since the following system

$$
f(\mathbf{x})-\gamma<0, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x})=\mathbf{0}, \text { for some } \mathbf{x} \in \mathcal{X}
$$

has no solution, the previous lemma implies there exists $\left(u_{0}, \mathbf{u}, \mathbf{v}\right) \neq(0, \mathbf{0}, \mathbf{0})$, $\left(u_{0}, \mathbf{u}\right) \geq(0, \mathbf{0})$ such that

$$
\begin{equation*}
u_{0}[f(\mathbf{x})-\gamma]+\mathbf{u}^{T} \mathbf{g}(\mathbf{x})+\mathbf{v}^{T} \mathbf{h}(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \mathcal{X} \tag{4}
\end{equation*}
$$

- Claim: $u_{0}>0$

Suppose $u_{0}=0$, then (4) becomes

$$
\mathbf{u}^{T} \mathbf{g}(\mathbf{x})+\mathbf{v}^{T} \mathbf{h}(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \mathcal{X}
$$

Take $\mathbf{x}=\hat{\mathbf{x}}$ implies $\mathbf{u}=\mathbf{0}$. Since $\mathbf{0} \in \mathbf{h}(\mathcal{X})^{\circ}$, there exists $\tilde{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{h}(\tilde{\mathbf{x}})=-\lambda \mathbf{v}$ for some $\lambda>0$. Take $\mathbf{x}=\tilde{\mathbf{x}}$ implies $\mathbf{v}=\mathbf{0}$. Therefore $\left(u_{0}, \mathbf{u}, \mathbf{v}\right)=(0, \mathbf{0}, \mathbf{0})$, which is a contradiction.

Take $\overline{\mathbf{u}}=\frac{\mathbf{u}}{u_{0}}$ and $\overline{\mathbf{v}}=\frac{\mathbf{v}}{u_{0}}$, then by (4) one obtains

$$
\begin{equation*}
f(\mathbf{x})+\overline{\mathbf{u}}^{T} \mathbf{g}(\mathbf{x})+\overline{\mathbf{v}}^{T} \mathbf{h}(\mathbf{x}) \geq \gamma, \forall \mathbf{x} \in \mathcal{X} \tag{5}
\end{equation*}
$$

Therefore $\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \geq \gamma$. Since $\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}}) \leq \zeta \leq \gamma$ by Corollary.4.2, one concludes that $\gamma=\zeta$ and that ($\overline{\mathbf{u}}, \overline{\mathbf{v}}$) solves the dual problem.

Finally, assume $\overline{\mathbf{x}}$ is primal feasible such that $f(\overline{\mathbf{x}})=\gamma$, then substitute $\mathbf{x}=\overline{\mathbf{x}}$ into (5) gives $\overline{\mathbf{u}}^{T} \mathbf{g}(\overline{\mathbf{x}})=0$.

4.2 KKT Conditions

Theorem 4.6. Let x and (\mathbf{u}, \mathbf{v}) be primal and dual feasible solutions respectively. Then $f(x)=\theta(\mathbf{u}, \mathbf{v})$ iff the KKT conditions hold:

- Stationary Condition: $x \in \arg \min _{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \mathbf{u}, \mathbf{v})$.
- Complementary Slackness: $u_{i} g_{i}(x)=0$ for all $i=1, \ldots, n$.
- Primal Feasibility: $\mathbf{g}(x) \leq \mathbf{0}, \mathbf{h}(x)=\mathbf{0}$
- Dual Feasibility: $\mathbf{u} \geq \mathbf{0}$.

Proof. - Necessity: Suppose \bar{x} and $\overline{\mathbf{u}}, \overline{\mathbf{v}}$ are primal and dual feasible solutions respectively for which $f(\bar{x})=\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}})$. The feasibility conditions follow by definition. Recall Theorem.4.1, one has
$f(\bar{x})=\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}})=\inf _{x \in \mathcal{X}} L(x, \overline{\mathbf{u}}, \overline{\mathbf{v}}) \leq L(\bar{x}, \overline{\mathbf{u}}, \overline{\mathbf{v}})=f(\bar{x})+\overline{\mathbf{u}}^{T} \mathbf{g}(\bar{x})+\overline{\mathbf{v}}^{T} \mathbf{h}(\bar{x}) \leq f(\bar{x})$
Hence we can replace the inequalities with equalities. Note that $\inf _{x \in \mathcal{X}} L(x, \overline{\mathbf{u}}, \overline{\mathbf{v}})=$ $L(\bar{x}, \overline{\mathbf{u}}, \overline{\mathbf{v}})$, so the stationary condition holds. Note that $\mathbf{h}(\bar{x})=\mathbf{0}$, so $\overline{\mathbf{u}}^{T} \mathbf{g}(\bar{x})=0$, which implies $\bar{u}_{i} g_{i}(\overline{\mathbf{x}})=0$ for all $i=1, \ldots, n$, so the complementary slackness holds.

- Sufficiency: Suppose $\bar{x}, \overline{\mathbf{u}}, \overline{\mathbf{v}}$ satisify KKT conditions, then

$$
\theta(\overline{\mathbf{u}}, \overline{\mathbf{v}})=f(\bar{x})+\overline{\mathbf{u}}^{T} \mathbf{g}(\bar{x})+\overline{\mathbf{v}}^{T} \mathbf{h}(\bar{x})=f(\bar{x})
$$

where the first equality comes from stationary condition, and the second equality comes from complementary slackness and primal feasibility.

5 Support Vector Machines

5.1 Support Vector Classification (SVC)

The SVC optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\mathbf{w}, b, \boldsymbol{\xi})=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} C_{i} \xi_{i} \\
& y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, i=1, \ldots, N \\
\text { subject to } & \xi_{i} \geq 0 \\
\text { variables } & \mathbf{w} \in \mathbb{R}^{m}, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^{N}
\end{array}
$$

Rewrite it in the form of primal problem:

$$
\begin{array}{ll}
\text { minimize } & f(\mathbf{w}, b, \boldsymbol{\xi})=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} C_{i} \xi_{i} \\
\text { subject to } & g_{1, i}(\mathbf{w}, b, \boldsymbol{\xi})=1-\xi_{i}-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 0 \tag{6}\\
\text { variables } & g_{2, i}(\mathbf{w}, b, \boldsymbol{\xi})=-\xi_{i} \leq 0
\end{array}, i=1, \ldots, N
$$

as well its Lagrangian dual problem:

$$
\begin{array}{ll}
& \overbrace{\text { maximize }} \\
& \theta(\alpha, \beta)=\inf _{\mathbf{w} \in \mathbb{R}^{m}, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^{N}}\left\{f(\mathbf{w}, b, \boldsymbol{\xi})+\sum_{i=1}^{N} \alpha_{i} g_{1, i}(\mathbf{w}, b, \boldsymbol{\xi})+\sum_{i=1}^{N} \beta_{i} g_{2, i}(\mathbf{w}, b, \boldsymbol{\xi})\right\} \\
\text { subject to } & \alpha_{i} \geq 0, \beta_{i} \geq 0, i=1, \ldots, N \\
\text { variables } & \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, i=1, \ldots, N \tag{7}
\end{array}
$$

where the Lagranian function can be explicitly written as
$L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} C_{i} \xi_{i}+\sum_{i=1}^{N} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)+\sum_{i=1}^{N} \beta_{i}\left(-\xi_{i}\right)$.

5.1.1 SVM Dual Problem in Explicit Form

Lemma 5.1. Let (α, β) be a feasible solution to (7). If the following conditions hold:

$$
\begin{equation*}
\sum_{i=1}^{N} \alpha_{i} y_{i}=0, \alpha_{i}+\beta_{i}=C_{i} \forall i=1, \ldots, N \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\theta(\alpha, \beta)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \tag{9}
\end{equation*}
$$

Otherwise, if (8) is not satisfied, then $\theta(\alpha, \beta)=-\infty$.
Proof. Take partial deriviates of the Lagranian function L over $\mathbf{w}, b, \boldsymbol{\xi}$, one has

$$
\nabla_{\mathbf{w}} L=\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \frac{\partial}{\partial b} L=-\sum_{i=1}^{N} \alpha_{i} y_{i}, \quad \frac{\partial}{\partial \xi_{i}} L=C_{i}-\alpha_{i}-\beta_{i}
$$

If (8) is satisfied, then $\theta(\alpha, \beta)=L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta)$ iff $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}$, at which (9) holds; Otherwise, as $\frac{\partial}{\partial b} L, \frac{\partial}{\partial \xi_{1}} L, \ldots, \frac{\partial}{\partial \xi_{N}} L$ are constants not identically zero, one has $\theta(\alpha, \beta)=-\infty$.

Remark 5.2. The stationary condition $\theta(\alpha, \beta)=L(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \beta)$ holds iff (8) is satisfied and $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}$.

By Lemma.5.1, one may rewrite (7) as
$\operatorname{maximize} \quad \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$
subject to $\quad \alpha_{i} \geq 0, \beta_{i} \geq 0, \alpha_{i}+\beta_{i}=C_{i}, \sum_{i=1}^{N} \alpha_{i} y_{i}=0, \quad i=1, \ldots, N$
variables $\quad \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, i=1, \ldots, N$
which can be further simplified as

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\text { variables } & 0 \leq \alpha_{i} \leq C_{i}, i=1, \ldots, N
\end{array}
$$

Claim 5.3. There exists primal optimal solution ($\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}}$) to problem (6).
Proof. (Warning: This proof requires basic understanding of mathematical analysis, which is beyond the scope of this course. It will not appear in course exams, and is merely a reference for those who are interested.)
WLOG one may assume the training data contains both positive and negative instances. ${ }^{3}$ The set of all primal feasible solutions is (cf.(6))

$$
\Omega=\bigcap_{i=1}^{N}\left(g_{1, i}^{-1}((-\infty, 0]) \cap g_{2, i}^{-1}((-\infty, 0])\right),
$$

which is an intersection of closed sets, so Ω is closed. Take some $\left(\mathbf{w}_{0}, b_{0}, \boldsymbol{\xi}_{0}\right) \in \Omega$, note that there exists compact set K where all primal feasible solutions $(\mathbf{w}, b, \boldsymbol{\xi}) \in$ Ω with $f(\mathbf{w}, b, \boldsymbol{\xi}) \leq f\left(\mathbf{w}_{0}, b_{0}, \boldsymbol{\xi}_{0}\right)$ must satisfy $(\mathbf{w}, b, \boldsymbol{\xi}) \in K$.

- To see this, if $(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega$ and $f(\mathbf{w}, b, \boldsymbol{\xi}) \leq f\left(\mathbf{w}_{0}, b_{0}, \boldsymbol{\xi}_{0}\right)=\kappa_{0}$, then $\|\mathbf{w}\| \leq \sqrt{2 \kappa_{0}}$, and that $\left|\xi_{i}\right| \leq \kappa_{0} / C_{i}, 1-\xi_{i}-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 0$ for all $i=1, \ldots, N$. Note that for arbitrary positive instance (with index i) and negative instance (with index j), that is $y_{i}=-y_{j}=1$, one has

$$
1-\frac{\kappa_{0}}{C_{i}}-\sqrt{2 \kappa_{0}}\left\|\mathbf{x}_{i}\right\| \leq 1-\xi_{i}-\mathbf{w}^{T} \mathbf{x}_{i} \leq b \leq \xi_{j}-1-\mathbf{w}^{T} \mathbf{x}_{j} \leq \frac{\kappa_{0}}{C_{j}}-1+\sqrt{2 \kappa_{0}}\left\|\mathbf{x}_{j}\right\|
$$

which implies

$$
l=\max _{i: y_{i}=1}\left\{1-\frac{\kappa_{0}}{C_{i}}-\sqrt{2 \kappa_{0}}\left\|\mathbf{x}_{i}\right\|\right\} \leq b \leq \min _{j: y_{j}=-1}\left\{\frac{\kappa_{0}}{C_{j}}-1+\sqrt{2 \kappa_{0}}\left\|\mathbf{x}_{j}\right\|\right\}=u
$$

Hence $(\mathbf{w}, b, \boldsymbol{\xi}) \in K$, for which $K=\left\{(\mathbf{w}, b, \boldsymbol{\xi}):\|\mathbf{w}\| \leq \sqrt{2 \kappa_{0}},\left|\xi_{i}\right| \leq \kappa_{0} / C_{i}, l \leq b \leq u\right\}$ is a compact set.

[^0]Since f is continuous and $\Omega \cap K$ is compact, so $f(\Omega \cap K)$ is compact. Hence there exists $(\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}}) \in \Omega \cap K$ for which

$$
f(\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}})=\inf _{(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega \cap K} f(\mathbf{w}, b, \boldsymbol{\xi})=\inf _{(\mathbf{w}, b, \boldsymbol{\xi}) \in \Omega} f(\mathbf{w}, b, \boldsymbol{\xi})
$$

In other words, $(\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}})$ is a primal optimal solution.
As we have shown the existence of primal optimal solution ($\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}}$), Theorem.4.5 implies there also exists dual optimal solution $(\bar{\alpha}, \bar{\beta})$. In the following claims we further link the relations between $(\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}})$ and $(\bar{\alpha}, \bar{\beta})$.

5.1.2 KKT Condition for SVM

Recall Remark.5.2, the stationary condition holds iff

$$
\begin{aligned}
& \text { (S1) } \alpha_{i}+\beta_{i}=C_{i} \forall i=1, \ldots, N \\
& \text { (S2) } \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& \text { (S3) } \quad \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}
\end{aligned}
$$

The primal and dual feasibility conditions are

The complementary slackness condition is

$$
\begin{array}{ll}
\text { (C1) } & \alpha_{i} g_{1, i}(\mathbf{w}, b, \boldsymbol{\xi})=\alpha_{i}\left(1-\xi_{i}-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)=0 \\
\text { (C2) } & \beta_{i} g_{2, i}(\mathbf{w}, b, \boldsymbol{\xi})=\beta_{i}\left(-\xi_{i}\right)=0
\end{array} \quad \forall i=1, \ldots, N
$$

Claim 5.4. Suppose $(\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}})$ and $(\bar{\alpha}, \bar{\beta})$ are the optimal solutions to problems (6) and (7) respectively, then

$$
\begin{array}{ll}
\overline{\mathbf{w}}=\sum_{i=1}^{N} \bar{\alpha}_{i} y_{i} \mathbf{x}_{i}, & \bar{b}=\underset{b \in \mathbb{R}}{\arg \min } \sum_{i=1}^{N} C_{i} \max \left(1-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+b\right), 0\right) . \\
\left\{\begin{array}{lll}
\bar{\alpha}_{i}=C_{i}, & \bar{\xi}_{i}=1-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right), & \text { if } y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)<1 \\
\bar{\alpha}_{i}=0, & \text { if } y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)>1 \\
0 \leq \bar{\alpha}_{i} \leq C_{i}, & \bar{\xi}_{i}=0, & \text { if } y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)=1
\end{array}\right.
\end{array}
$$

In particular, $\bar{\xi}_{i}=\max \left(1-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right), 0\right)$ for all $i=1, \ldots, N$.
Proof. Observe that (6) can be rewritten as the following optimization problem
$\operatorname{minimize} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} C_{i} \max \left(1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right), 0\right)$ variables $\quad \mathbf{w} \in \mathbb{R}^{m}, b \in \mathbb{R}$

Given the optimal weighting vector $\overline{\mathbf{w}}$, the optimal bias is given by

$$
\bar{b}=\underset{b \in \mathbb{R}}{\arg \min } \sum_{i=1}^{N} C_{i} \max \left(1-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+b\right), 0\right) .
$$

By Theorem.4.6, ($\overline{\mathbf{w}}, \bar{b}, \overline{\boldsymbol{\xi}}, \bar{\alpha}, \bar{\beta})$ satisfies KKT conditions, so $\overline{\mathbf{w}}=\sum_{i=1}^{N} \bar{\alpha}_{i} y_{i} \mathbf{x}_{i}$ and that the following satisfies for all $i=1, \ldots, N$:

$$
\begin{array}{ll}
\text { (P1) } & y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right) \geq 1-\bar{\xi}_{i} \\
\text { (P2) } & \bar{\xi}_{i} \geq 0 \\
\text { (D1) } & \bar{\alpha}_{i} \geq 0 \\
\text { (D2) } & \bar{\beta}_{i} \geq 0 \\
\text { (C1) } & \bar{\alpha}_{i}\left(1-\bar{\xi}_{i}-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)\right)=0 \\
\text { (C2) } & \bar{\beta}_{i} \bar{\xi}_{i}=0 \\
\text { (S1) } & \bar{\alpha}_{i}+\bar{\beta}_{i}=C_{i}
\end{array}
$$

- If $y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)<1$, then $\bar{\xi}_{i}>0$ by (P1), $\bar{\beta}_{i}=0$ by (C2), $\bar{\alpha}_{i}=C_{i}$ by (S1), $\bar{\xi}_{i}=1-y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)$ by (C1).
- If $y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)>1$, then $\bar{\alpha}_{i}=0$ by (P2,C1), so $\bar{\beta}_{i}=C_{i}$ by (S1), so $\bar{\xi}_{i}=0$ by (C2).
- If $y_{i}\left(\overline{\mathbf{w}}^{T} \mathbf{x}_{i}+\bar{b}\right)=1$, then $\bar{\xi}_{i}=0$ by ($\mathrm{S} 1, \mathrm{C} 1, \mathrm{C} 2$), and $0 \leq \bar{\alpha}_{i} \leq C_{i}$ by (D1,D2,S1).

[^0]: ${ }^{3}$ Otherwise, say $y_{1}=\cdots=y_{N}=\zeta$ for some $\zeta \in\{ \pm 1\}$, then $(\mathbf{w}, b, \boldsymbol{\xi})=(\mathbf{0}, \zeta, \mathbf{0})$ is a trivial primal optimal solution.

